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ABSTRACT 

An articulated arm with three degrees of freedom is implemented and tested on an 

autonomous robot. Kinematic equations of motion for the arm are modeled and tested. A 

communication architecture is successfully implemented for wireless manual control of 

the arm. Visual and thermal cues are realized with an onboard camera and a collocated 

thermal sensor.  Future work suggests investigations for full autonomous arm control 

without manual operator intervention based on sensor cues and visual scene correlation. 
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I. INTRODUCTION  

Robots used in military operations and applications continue to be a rich 

environment for research. Recently, robots have proven their worth in battlefield by 

saving lives and providing critical support capabilities for missions such as Improvised 

Explosive Device (IED) detection and defeat, reconnaissance, Explosive Ordnance 

Disposal (EOD), Force Protection (FP), countermining and Unexploded Ordnance 

(UXO) clearance [Ref. 1].  Consequently,  the “Numbers of Unmanned Ground Vehicles 

(UGVs) procured and deployed by Department of Defense (DoD) have increased from 

less than a hundred in 2001 to a number of that will approach the 4,000 mark by the end 

of calendar year 2006” [1]. 

The increased role of robots in the battlefield has resulted in an analogous 

increase of the capability requirements for these robots. To accomplish this, the Joint 

Ground Robotics Enterprise (JGRE), which began life as the Joint Robotics Program 

(JRP) in 1989, was reorganized in 2006. “The JGRE mission is to advance Departmental 

ground robotics initiatives, focus ground robotics technologies on the warfighter 

capability needs, and assess/mature selected ground robotics technologies to meet 

identified capability gaps” [2]. Those technologies include robotic platforms with 

navigation technologies, communications, payloads, and control systems. 

A. PREVIOUS NAVAL POSTGRADUATE SCHOOL (NPS) PROJECTS 

The NPS Small Robot Technology (SMART) program develops prototype robotic 

platforms for military applications.  

This project’s development (Figure 1) started with a prototype in 2003, known as 

Bender, see Figure 2.  Bender was not developed for a specific objective, but was 

intended to make a platform based on autonomous architecture.  It had a box shape with a 

hardened track chassis and could move to designated destinations autonomously via 

waypoint navigation.  It viewed obstacles through a web-cam and avoided collisions 

using ultrasound sensors during movement.  All elements were controlled by a 
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microcontroller (a commercial BL2000 by Z-World) programmed by the Dynamic C 

language [3]. Dynamic C is a C based programming language with a development 

environment tailored to program a suite of microcontrollers developed by Z-World. It 

includes a fully functional programming library and well-developed documentation. 

 

Figure 1.   BigFoot. 

 

Figure 2.   Bender (From [3]). 
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A second generation robot, known as Lopez, was prototyped for surf-zone 

operations. The mission included general reconnaissance and beachhead surveillance.  

While this prototype did not have full mobility, the robot began to take its final shape in 

Figure 3. Lopez was used to finalize the control interface, test components and increase 

the motor control of the robot [4]. 

 

Figure 3.   Lopez (From [4]). 

The third generation prototype, named Agbot, was a collaborative effort between 

the Naval Postgraduate School and Case Western Reserve University. “The robot was 

designed to work in soft soils encountered in agricultural beach head settings. Agbot has 

an aluminum chassis and features a much more powerful motor than the previous 

prototype” [4]. Figure 4 shows Agbot prepared for a test run.  Both Lopez and Agbot 

were designed to run via a remote Java user application.  These platforms both 

incorporate the same basic components (GPS, onboard computer, compass, and router) as 

BigFoot. 

 

Figure 4.   Agbot (From [4]). 
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The fourth generation of the SMART robot was the Autonomous Ground Vehicle 

(AGV), created by MAJ Ben Miller US Army.  AGB was a wheeled platform and was 

equipped with acoustic and IR (infrared) detectors to detect motion. AGB had the 

capability to report images to remote monitoring stations via a web camera. The concept 

of operations for AGV was to assist in the interdiction of IED placement [3].  Figure 5 

shows AGV on the ground.  The AGV platform was too small and slow to perform 

Bigfoot’s mission, but was the basis for BigFoot’s development. 

 

Figure 5.   AGV (From [3]). 

B. MILITARY INITIATIVES 

An IED can be almost anything with any type of material and initiator. It is a 

“homemade” device that is designed to cause death or injury by using explosives alone or 

in combination with toxic chemicals, biological toxins, or radiological material [5]. Since 

October 2001, improvised explosive devices (IEDs, roadside bombs, and suicide car 



 5

bombs) have been responsible for many of the more than 3,000 combat deaths in Iraq and 

many of the more than 240 combat deaths in Afghanistan [6].  

TALON is a robot equipped with a two-stage arm to relocate suspected IEDs or to 

place an explosive charge on previously located IEDs.  TALON was used in military 

operations in Bosnia in 2000, was deployed to Afghanistan in early 2002 and has been in 

Iraq since the war started. The mission of TALON is to assist with improvised explosive 

device detection and removal. It was used in about 20,000 missions in Iraq and 

Afghanistan by the end of 2004 [7]. Talon weighs less than 45 kilograms. Figure 5 shows 

a TALON with the articulated arm.  

 

Figure 6.   TALON (From [7]). 

Another robot, called the PackBot Figure 7, has also been used to clear bombs and 

explore suspected terrorist positions.  PackBot is equipped with dual rotating flippers that 

allow the robot to negotiate stairs, maneuver over rocks and rubble, and navigate narrow, 

twisting passages. It is designed to handle a range of Improvised Explosive Devices 

(IEDs) and conventional ordnance disposal challenges [8]. PackBot Weighs less than 24 

kilograms fully loaded.  
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Figure 7.   PackBot (From [8]). 

 

For Explosive Ordnance Disposal (EOD) missions, the arm is used to place 

shaped charges on previously identified IED’s. 
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II. THEORY 

This chapter discusses robot autonomy and movement of the arm. It focuses on 

the kinematics related to the position of the arm. 

A. ROBOT AUTONOMY 

Autonomy refers to systems having the ability to operate in a real environment for 

long periods of time without external support. To date, fully autonomous robots have not 

yet been realized. 

Autonomy requires the implementation of sensors and actuators to gather 

information from the environment and to act on that information to perform given 

missions.  

Movement and path planning is a discipline that must be mastered to realize robot 

autonomy.  The purpose is to convert mission objectives into a high level programming 

language and then program the robot to convert these objectives into low level 

movements for mission accomplishment via platform mobility and motion of a device 

like an arm, leg or wheel.  

B. THEORY OF ARM MOVEMENT 

A robot arm is a manipulator. The links of such a manipulator are connected by 

joints that allow rotational motion or translational displacement. The links of the 

manipulator can be considered to form a kinematic chain. The end of the kinematic chain 

of the manipulator is called the end effector. Figure 8 shows a model robotic arm 

identifying the kinematic chain and the end effector. 
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Figure 8.   Model Robotic Arm 

Degrees of freedom (DOF) are the set of independent rotations or displacements 

that specify the position and orientation of the body or the system. This concept is 

fundamental in understanding the mechanics and implementation of a robotic arm on an 

autonomous robot. 

For an arm to perform specific tasks, the location of the end effector relative to 

the base is established first. This technique is the called the kinematic analysis problem. 

There are two types of kinematic analysis problems: (1) direct kinematics and (2) inverse 

kinematics. For direct kinematics, the joint variables are given and the problem is to find 

the location of the end effector. For inverse kinematics, the location of the end effector is 

given and the problem is to find the joint variables necessary to bring the end effector to 

the desired location [9]. 

1. Position and Orientation 

The position of any point with respect any reference frame can be described by a 

3 1×  position vector. For example, the position of a point P  can be expressed as A P .  
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This means that the components of A P  have numerical values that indicate distances in 

the frame of {A}. A point A P  is represented as an ordered set of three numbers. Where 

the subscripts ,x y and z  are individual elements of a vector in a Cartesian coordinate 

system:  

                                      
x

A
y

z

p
P p

p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                       (2-1) 

The orientation of a body, then, can be described with a coordinate system 

attached to the body relative to the earth or fixed reference frame. In Figure 8, 

coordinate system {B} has been attached to the body relative to {A} and allows us then 

to give the orientation of the body. 

 

Figure 9.   Locating an object in position and orientation (From [10]). 

Thus, positions and orientations of bodies are described as an attached coordinate 

system. So we can describe the body attached coordinate system {B} as the unit vectors 

of its three principal axes in terms of the coordinate system {A}. 

The unit vectors giving the principal directions of coordinate system {B} are 

denoted as ˆ
BX , B̂Y , and ˆ

BZ . In terms of coordinate system {A}, they are called ˆA
BX , 



 10

ˆA
BY  , ˆA

BZ . These three unit vectors can be described by the columns of a 3 3× matrix, 

in the order ˆA
BX , ˆA

BY  , ˆA
BZ . We call the matrix A

B R  the rotation matrix of coordinate 

system {B} with respect to {A}. The leading super and subscripts indicate the order of 

transformation:  

                                  
11 12 13

21 22 23

31 32 33

A A A A
B B B B

r r r
R X Y Z r r r

r r r

∧ ∧ ∧
⎡ ⎤

⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

.                               (2-2) 

 

2. Kinematics 

Kinematics deals with the aspects of motion without regard to the forces 
and/or torque that cause it. The science of kinematics deals with the 
position, velocity, acceleration, and higher-order derivatives of the 
position variables with respect to time or other variables. Hence 
kinematics is concerned only with the geometrical and time properties of a 
motion. The joint variables of a robot manipulator are related to the 
position and orientation of the end effector by the constraints imposed by 
the joints [9]. 

a. Link Parameters 

A manipulator may be thought of as a set of links connected in a chain by 

joints, see Figure 10. Joints form a connection between neighboring link pairs. In a 

manipulator, each link has four link parameters. (1) Link length, (2) link twist, (3) link 

offset, and (4) joint angle. Length and twist describe the link itself and offset and joint 

angle describe how neighbor links are connected to each other. Figure 10 illustrates the 

four link parameters 
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Figure 10.   Link Parameters (From [10]). 

The Link length is the length of a line that is mutually perpendicular to 

both joint axes. For example, the link length between joint axes i  and 1i −  is called 1ia − , 

as shown in figure 9. 

The second parameter is link twist. Link twist is the 1ia − angle, measured 

from axis 1i −  to axis i , using the right-hand rule. Link twist defines the relative location 

of the two axes.  

The third parameter is link offset. Link offset is the distance measured 

along the axis between two neighbor links, from the point where 1ia −  intersects axis i  to 

the point where ia  intersects axis i . The link offset at joint axis i  is called id .  

The fourth parameter is the joint angle iθ  referring to the relative angle 

between one link and its neighbor. Figure 9 illustrates the link parameters of one link of a 

manipulator.  
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b. Convention for Affixing Frames to Links 

To describe the location of each link relative to its neighboring links, a 

frame attached to each link is defined. See Figure 11 for the i  and 1i −  link frames in a 

kinematic chain. The link frames are numbered according to the link to which they are 

attached. That means frame { i } is attached to link i . This convention is followed to 

locate frames on the links. 

Now, the Ẑ -axis of frame { i }, called ˆ
iZ , is in the same direction with the 

joint axis i . The X̂ -axis of frame { i }, called ˆ
iX , is pointing towards the direction of ia , 

the length from joint i  to joint 1i + . The direction of the Ŷ -axis of frame { i }, called îY , 

and is determined according to the right-hand rule.  

The following definitions of link parameters are given below according to 

the frame convention as identified in [Ref 10].  

•   ia  is defined as the distance from ˆ
iZ  to 1

ˆ
iZ +  measured along ˆ

iX . 

•   iα  is defined as the angle between ˆ
iZ  and 1

ˆ
iZ +  measured along ˆ

iX . 

•   id  is defined as the distance from 1
ˆ

iX −  and ˆ
iX  measured along ˆ

iZ . 

•   iθ  is defined as the angle from 1
ˆ

iX −  and ˆ
iX  measured along ˆ

iZ . 

Figure 11 illustrates link parameters according to the frame convention. 
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Figure 11.   Link frames are attached so that frame{ i } is attached to link i ( From [10]). 

c. Mapping Involving general Frames 

Before the mathematical model for arm position and orientation is 

explained, we need to first understand the mappings for translated and rotated frames as 

identified by traditional transformation matrices. 

For pure translation, a point P  in space, relative to the fixed frame {A}, 

is: 

A B A
BORGP P P= +                                                        (2-3) 

Where A P  is the vector that locates point P  relative to frame {A}, B P  is 

the vector that locates point P  relative to frame {B}, and A
BORGP  is the vector that 

locates the origin of frame {B} relative to frame {A}, see Figure 12. 

In case of pure rotation, a point P  in space, relative to the fixed frame 

{A}, is given as: 

A A B
BP R P=                                                               (2-4) 
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Where A
B R  is the rotation matrix of the moving frame {B} with respect to 

the fixed frame {A}.  

Figure 12 illustrates both translation and rotation. The mapping of a vector 

from one frame to another frame is described as follows:  

A A B A
B BORGP R P P= +                                                   (2-5) 

Or 

A A B
BP T P=                                                                (2-6) 

Where 

000 1

A A
A B BORG
B

R P
T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                                                   (2-7) 

 

Figure 12.   General Transformation of a vector (From [10]). 

This 4 ×4 matrix (2-7) is called a homogeneous transformation, which can 

make the rotation and translation of the general transform into a single matrix form. We 

observe that transformation matrices can be used to specify a frame. For manipulator 

kinematics, the transformation matrix, relating two frames attached to neighboring links, 

is given by: 
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1

1 1 1 11

1 1 1 1

cos sin 0
sin cos cos cos sin sin
sin sin cos sin cos cos

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

a
d

T
d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                    (2-8) 

 

To develop the kinematic equations, we define the link frames and the 

corresponding link parameters. From these, we can derive the individual link-

transformation matrices. Then, by multiplying the link transformation matrices from 0
1 T  

to 1N
N T− , the single transformation matrix 0

N T  can be obtained as follows: 

                                0 0 1 2 2 1
1 2 3 1

N N
N N NT T T T T T− −

−= ⋅⋅⋅ ⋅ ⋅ .                                              (2-9) 

C. PRIOR WORK 

BigFoot was developed by LT John Frederick Herkamp as a logical follow-on to 

the prior work done on Bender. It employs two modes for navigation: autonomous and 

manual. The operator can choose one of two modes via a Java Graphic User Interface 

(GUI) on a laptop computer. 

In autonomous mode, BigFoot navigates to way-point destinations autonomously 

and avoids obstacles, on the way, using ultrasonic and infrared (IR) rangers.  

In the manual mode, the operator drives BigFoot directly to remote destinations 

via a wireless, stateless, UPD/IP network protocol. 

The robot is equipped with a web camera and a thermal sensor to get environment 

sensor data of surrounding terrain and obstacles. The camera sends streaming video as 

well as pictures. The thermal sensor, mounted on the camera, shows correlated thermal 

information with the visual image. 

BigFoot’s arm is built as a proof of concept. So the majority of BigFoot’s 

remaining work is in development of the arm. 
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III. EXPERIMENTAL SETUP 

Before explaining the arm installation, it is helpful to understand the 

communication architecture of the arm, the camera and the thermopile. These three 

sensors are necessary to accomplish the proposed mission of BigFoot as a concept of 

operations. In order to avoid communication interrupt, different communication paths 

for sensors are chosen and especially the arm is directly controlled by the operator. 

Figure 13 shows the block architecture diagram for the arm, camera and thermopile.  

 

Figure 13.   Block Diagram for the Arm, Camera and Thermopile. 

A. ARM INSTALLATION 

BigFoot’s arm is a Lynxmotion servo erector set with 3 degrees of freedom [10]. 

The arm consists of a rotatable base, shoulder, elbow and a functional gripper which are 

controlled by the arm controller. Figure 14 shows BigFoot’s arm. 
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Figure 14.   BigFoot’s Arm. 

1. Mechanical Components 

The base, mounted on a servo, can rotate without having to move and has five 

6mm bearings to reduce the friction during rotation. 

The shoulder, elbow, wrist and gripper are connected using aluminum tubings, 

tubing connectors and servo brackets. 

2. Servos 

BigFoot uses Hitec digital servos (HS-645, HS-475) to control the base, the 

shoulder, the elbow and the grip.  

The HS-645 servo, used for the base, shoulder and elbow, provides up to 180  

range of rotation and supports 133 oz.-in. torque. The HS-475 servo, used for gripper, 

provides a 180  range of rotation and supports 76 oz.-in. torque. 

 



 19

B. ELECTRICAL 

1. Batteries 

The robot uses two kinds of batteries. A 24 VDC 4 Ahr NIMH battery pack for 

the motors is arranged in a 2× 10 array of C batteries weighing about 3lb 8oz. This 

battery pack is mounted on the underside of BigFoot’s base. A 15VDC 11 Ahr Lithium 

Ion battery, mounted on the upside of BigFoot’s base, is used for electronics. 

2. Power Regulation and Power Distribution 

The 15V battery for the electronic power is regulated to 12V via a standard 7812 

voltage regulator, to 6V via a L4964 high current switching regulator and then from 12V 

to 5V via a standard 7805 regulator. To protect the 5V bus, a 330µF capacitor is 

connected between the 5V regulator and the 5V bus. The camera uses a separated 5V 

regulator not to overload the primary 5V regulator. 

Figure 15 shows a diagram of the power regulation system and Figure 16 shows 

the power regulator. 

 

Figure 15.   Power Regulation System Diagram. 
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Figure 16.   Power Regulator. 

Figure 17 shows BigFoot’s power distribution diagram. The power distribution of 

BigFoot is split into two parts. The first power distribution portion is for motor power. 

Motor battery power is sent through a double pole switch which has three positions with 

the center being the off position. When the switch is up, the motor battery power is 

directed through a pair of 25A fuses to the motor controller’s input terminals. When the 

motor switch is down, the battery is connected to a pair of red and black terminals so a 

battery charger can be connected. 
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Figure 17.   Power Distribution Diagram. 

The second power distribution portion is for the electronics bus. The electronics 

battery power is distributed through 12V, 6V and 5V regulators to electronic loads via 

individual switches. The voltage testing terminals are connected to the switch panel 

(Figure 18). The various colors of terminals indicate different voltages. 24V power is red, 

15V is green, 12V is blue, 6V is violet, 5V is yellow and common is black. When the 

switches are turned on, power is sent to the power panel (Figure 19) where the power is 

directed through fuses or poly-switches for 5 V, 6V, 15 V and 12 V loads. Light Emitting 

Diodes (LEDs), connected to the switches, emit light when power is distributed to loads. 

The poly-switches and fuses are connected by quick connectors for easy removal or 

testing.  

Connections to the 5V bus include the BL2000, the compass and the sonar, and 

the I2C serial data port.  The white wire of the I2C bus is used for serial data (SDA) and 

the purple wire is used for serial clock (SCL). The master device of I2C is the BL2000. 
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Figure 18.   Switch Panel. 

 

 

Figure 19.   Power Panel. 
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C. MICROPROCESSOR 

1. Arm Controller 

The arm controller for BigFoot is the Lynxmotion SSC-32 servo controller. The 

servo controller is connected via a DB9F connection to the wireless adapter for RS-232 

serial communications with the operator laptop. The controller can control up to 32 

servos. Figure 20 shows the Lynxmotion SSC-32 servo controller. 

 

 

Figure 20.   Lynxmotion SSC-32 servo controller. 

 

The Servos are controlled with a 5VDC positive-going variable pulse width that 

repeats every 20mS and recognizes a range of 0.9mS to 2.1mS and provides a +/- 45 

degree range of motion. The controller can provide the servo an extra range of 

about180  [11]. Figure 21 shows the normal and extended ranges of the servo. 
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Figure 21.   The normal and extended range of the servo (From [11]). 

 

2. OOPic  

The Object Oriented Programmable Interface Controller (OOPic) is used for a 

servo mounted directly below the camera via a Java GUI. BigFoot has an OOPic II+ 

utilizing B.2+ firmware version. The OOPic II+’s memory is arranged as 512 byte RAM 

plus a 256 byte EEPROM. The OOPic II expansion card, providing connections for 

servos, IR detectors, and LCD module, and other loads is connected via the interface 

board to OOPic II+. BL2000 is also connected via the interface board to OOPic II+.  

Figure 22 shows the connections among OOPic II+, OOPic II expansion card and 

interface board. 
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Figure 22.   OOPic II+, OOPic II Expansion Card and Interface Board. 

D. SENSORS 

1. Thermopile 

To get thermal information, BigFoot employs a Trekker Thermal Array Sensor 

TPA81 (Figure 23) mounted on the camera as shown in Figure 24. The thermal sensor 

detects infrared in the 2um-22um range. It has eight thermopiles arranged in a row and 

can measure the absolute temperature of eight adjacent point simultaneously [12]. This 

thermal sensor has an I2C interface and is programmed to address 0xD0. 

 

Figure 23.   Trekker Thermal Array Sensor TPA81 (From [12]). 
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2. Camera 

BigFoot’s camera, D-Link DCS-900, is mounted on a servo in front of the base to 

permit rotating to view BigFoot’s surroundings without any movement of BigFoot. The 

camera can send not only streaming video but also pictures to the Java based GUI on a 

laptop computer. The camera has a manual focus with 320×240 and 640× 480 pixel 

resolution [13]. The camera uses a separate 5 V voltage regulator and is connected 

directly to the router. Figure 24 shows the camera mounted on a servo. 

 

Figure 24.   Camera mounted on a servo. 

E. COMMUNICATIONS 

BigFoot uses two Proxim RangeLAN2 Ethernet Adapters 7910 to communicate 

with the SSC-32 servo controller. The adaptor supports point–to-point and point-to-

multipoint wireless configurations and can be either a master or a slave station using the 

station/master rotary switch.  

The adaptor uses the frequency hopping spread spectrum technology (FHSS) in 

the 2.4GHz range [14]. The speed of data transfer is 1.6Mbps. Figure 25 shows Proxim 

RangeLAN2 Ethernet Adapter 7910. 
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Figure 25.   Proxim RangeLAN2 Ethernet Adapter 7910 (From [14]). 

F. JAVA GUI 

The Java GUI was originally developed at NPS by LT Kubilay Uzun [Ref.15] and 

rewritten and modified by LT John Herkamp [3]. LT Herkamp organized the GUI 

window using three tabs (Navigation tab, Arm tab, Sensors tab) but Navigation and 

Sensors tabs are only used with this project. The arm is controlled with another 

application. The application will be explained in the next chapter. BigFoot is controlled 

by the operator via a Java GUI on a laptop computer. The GUI allows the operator not 

only to drive BigFoot autonomously using waypoints for navigation but also to control 

BigFoot in manual mode using drive buttons and joystick mode.  

Figure 26 shows the sensor tab. A drawing of BigFoot is shown at the left side of 

the window. An arc in front of BigFoot moves according to the pointing direction of the 

camera and thermopile. The right side of the window displays the images with camera 

buttons and temperature information. The snap photo button allows the images to be 

saved on the hard drive of the GUI laptop. The pan left and right button control the 

servo for BigFoot’s camera. The eight blocks, located at the bottom of the right side of 
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the window, give temperature information from the thermopile. The temperature 

information is displayed with the numerical Centigrade temperature and colors. 0 

degrees represent white and 255 degrees represents red. 

 

 

Figure 26.   Sensor Tab. 

G. ARM WORK 

The Lynxmotion Robotic Arm Interactive Operating System (RIOS) is Windows 

program for controlling the arm with the SSC-32 servo controller. The RISO can set all 

servos to 1.5mS in order to make sure the arm is configured for the RIOS software [Ref. 

11]. The figure 27 shows Lynxmotion RIOS SSC-32 arm control software. 

 The range of the servo is specified using the SSC-32 configuration application 

(Figure 27). A position value of 500 corresponds to 0.5mS pulse, and a position value of 

2500 corresponds to 2.5mS pulse. The control bars caused the selected servo to rotate to 
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any position among the specified range. There are also configuration settings for servos 

on channels 7 and 8, which are not used for the arm. BigFoot uses the channel 7 to 

control the servo mounted under the camera. 

 

 

Figure 27.   SSC-32 config. 
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IV. RESULTS 

In order to better understand the rotational motion and translational displacement 

of BigFoot’s arm a simulation (Figure 28) was built using MATLAB program. This 

simulation gave insight into BigFoot’s arm performance and will serve as a basis for 

understanding the kinematics to employ the arm in full autonomous mode in the future. 

This Model shows the arm moving through a full range of motion for rotation and 

extension validating the conceptual design for our platform.  

Field tests have shown that the arm can be successfully employed against a mock 

IED in manual mode, Figure 29. Our results also show that the length of the arm link 

from elbow to effector needs to be longer. We have also noted that the position of the arm 

on the robot needs to change to a more central location on the platform. This will allow 

for an ability to place or pick up objects from other than the forward position. 

 

 

Figure 28.   Simulation Model for BigFoot’s Arm. 
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The Wireless communications architecture for manual control of the arm was 

satisfactory for the expected communication ranges (line of sight) for the robot.  

Mechanically the arm performed well with the expected loads for the arm. The 

translation and rotation servos mounted on the arm were well controlled with variable 

pulse widths that repeat every 20mS. 

As shown in Figure 29, BigFoot’s arm carries and places a shaped charge model 

on a mock IED in the field. The size of the shaped charge model is 3.5cm diameter ×  

5.0cm length.  

 

 

Figure 29.   BigFoot launched a shaped charge model on the suspected IED. 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The ability to employ robotic arms on mobile platforms is not new. The ability for 

an articulated arm to maneuver, pick up and place an object, from visual or other sensor 

feedback is also not new. The combination of these two abilities in a robot that can sense 

its environment, make decisions, and then pick up or place objects with little to no 

operator interaction is new. This thesis is a first step into better understanding the 

solution to this problem.   

B. FUTURE WORK 

Future work includes, principally, the development of autonomous arm motion 

and control models and algorithms for arm control and employment. Additionally, sensor 

interpretation and data fusion, which is fed into to the arm algorithm, still needs to be 

explored to fully realize actual autonomous behavior. The choice of proper sensor arrays 

will be critical to accomplish this and appears to be a daunting task. 
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